___, ID ____

MTH 418 Graph Theory Spring 2016, 1-1

HW Five, MTH 418, Spring 2016

Ayman Badawi

- **QUESTION 1.** (i) Let *H* be a connected graph of order ≥ 4 . Suppose that *H* has exactly three vertices that form the cycle C_3 but *H* has no other cycles. Convince me that $\chi(H) = 3$. [Hint: Consider the graph $D = H C_3$.]. Is *H* a critical graph? explain.
- (ii) Let H be a planar connected graph of order $n \ge 3$. Convince me that the number of all faces of H (bounded + unbounded) is $\le 2n 4$.
- (iii) Let H be a planar connected graph of order 5 such that number of all faces is 6. Construct H. Is H a maximal planar?
- (iv) Convince me that Q_4 is not a planar (Hint: show that Q_4 has a subgraph that is a subdivision of $K_{3,3}$). Now convince me that Q_n is not a planar for $n \ge 4$. [Hint: Only stare at the subgraph that you constructed for Q_4 and ... one more statement and you are done!]. Hence we conclude from this question that Q_n is planar only when n = 1, 2, 3.
- (v) Let *H* be a planar connected graph with no triangles (i.e, no C_3 as a subgraph) and of order $n \ge 3$. Convince me that the number of all faces of H (bounded + unbounded) is $\le n 2$.
- (vi) Let *H* be a connected maximal planar graph of order $n \ge 3$. Let *D* be a subdivision of *H*. Then it is clear that *D* is planar. Assume that every bounded face of *D* is C_4 . How many vertices does *D* have? How many edges does D have? (give your answer in terms of *n*).
- (vii) Let *H* be a connected 3-regular graph of order 10 (such graph is called Petersen Graph). Find $\chi(H)$, $\overline{\chi}(H)$. Find $\kappa(H)$. Is *H* a planar? Is *H* critical?

Due date: Sunday May 15,2016 Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com